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The effect of Prandtl number on the dynamics of a convective turbulent flow is
studied by numerical experiments. In particular, three series of experiments have been
performed; in two of them the Rayleigh number spanned about two decades while the
Prandtl number was set equal to 0.022 (mercury) and 0.7 (air). In the third series, in
contrast, we fixed the Rayleigh number at 6×105 and the Prandtl number was varied
from 0.0022 up to 15. The results have shown that, depending on the Prandtl number,
there are two distinct flow regimes; in the first (Pr . 0.35) the flow is dominated by
the large-scale recirculation cell that is the most important ‘engine’ for heat transfer.
In the second regime, on the other hand, the large-scale flow plays a negligible role
in the heat transfer which is mainly transported by the thermal plumes.

For the low-Pr regime a model for the heat transfer is derived and the predictions
are in qualitative and quantitative agreement with the results of the numerical simu-
lations and of the experiments. All the hypotheses and the consequences of the model
are directly checked and all the findings are consistent with the predictions and with
experimental observations performed under similar conditions. Finally, in order to
stress the effects of the large-scale flow some counter examples are shown in which
the large-scale motion is artificially suppressed.

1. Motivation
The turbulent heat transport between two horizontal surfaces at different tem-

peratures is a model problem that has been considered in countless numerical and
experimental studies. The flow dynamics depends essentially on two dimensionless
parameters: the Rayleigh (Ra) and Prandtl (Pr) numbers defined as

Ra =
gα∆d3

νκ
and Pr =

ν

κ
, (1.1)

where ∆, d, α, ν and κ are, respectively, the temperature difference between the
surfaces, their separation distance, the thermal expansion coefficient of the fluid, its
kinematic viscosity and its thermal diffusivity.

Equation (1.1) shows that the Rayleigh number depends on the fluid type but also
on the cell geometry and experimental conditions; in contrast, Pr is essentially fixed
once the fluid is chosen. From an experimental point of view it is quite easy to vary
the Rayleigh number over several decades by changing ∆ and d while the Prandtl
number can take only a limited number of discrete values obtained using different
fluids.

Most common fluids have values of Pr in the range 1–10 or much bigger (Pr ' 0.7
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for air and gaseous helium, Pr ' 7 in water and Pr = O(103) for silicon oils)
and these have been extensively studied in the literature owing to their relevance in
theoretical and practical applications. Flows with Prandtl number much smaller than
unity are very important as well (in the Earth’s liquid core convection, crystal growth
in semiconductors, melting processes etc.) and they are obtained using liquid metals.
Mercury is a commonly used fluid since it is liquid at ambient temperature; in contrast,
for sodium a mean temperature above 373 K is needed. The use of different liquid
metals poses serious practical problems such as poisoning, over-expensive materials
or very high mean temperatures. This implies that the experimental analysis of the
low Pr region is limited to essentially two fluids in a flow regime where a strong
dependence of heat transfer on Prandtl is observed.

Numerical simulations, on the other hand, suffer from the inherent limitations
of spatial resolution but a continuous variation of the Prandtl number within the
desired range can be performed without problems. This suggests that, for low Prandtl
number turbulent convection, numerical and laboratory experiments could be used
as complementary tools in order to obtain a deeper knowledge of the flow dynamics.
This consideration forms the main motivation for the present study.

In this paper we consider the turbulent thermal convection evolving in a cylindrical
cell of unity aspect ratio (cell diameter/height) for several values of the Rayleigh
and Prandtl numbers. This configuration has been already considered by Takeshita et
al. (1996) in mercury, by Cioni, Ciliberto & Sommeria (1997) in mercury and water
and by Castaing et al. (1989) in gaseous helium. The availability of these experiments
performed in identical conditions made possible a comparison of the results and
allowed the extension of the conclusions to a wider range of parameters. We have
performed three series of numerical simulations in which we have filled the gaps in
the experimental data at Pr ' 0.022 (mercury) for Ra 6 106, at Pr ' 0.7 (air and
gaseous helium) for Ra 6 2 × 107 and at fixed Ra for 0.022 6 Pr 6 15. From the
integrated analysis of the data from simulations and experiments a clearer picture
of the flow dynamics has emerged. In particular a threshold value of the Prandtl
number (Prt ≈ 0.35) has been found that separates distinct flow regimes. For Prandtl
number above this threshold the heat transport is essentially due to the thermal
plumes, consistent with the scenario proposed by Castaing et al. (1989). In contrast,
below Prt thermal plumes are not generated and the heat is efficiently transported
by the large-scale flow. This flow structure is the basis of the ‘flywheel’ model by
Jones, Moore & Weiss (1976) and later by Busse & Clever (1981) that in the present
paper has been validated and extended. This model is in quantitative agreement with
experiments and simulations and predicts the correct Rayleigh and Prandtl number
dependence of the Nusselt number for Pr < Prt.

2. Problem description and numerical set-up
In this paper we study the flow generated by thermal convection processes in a

set-up which is identical to the experimental set-up of Cioni et al. (1997). Details
and sketches are in Verzicco & Camussi (1997) and Camussi & Verzicco (1998); here
only a short description is given. The fluid is confined in a cylindrical cell; let D be
the diameter of the cell and d the distance between the lower hot and upper cold
horizontal plates. The aspect ratio of the cell Γ = D/d is 1 for all the simulations.
The gravity vector points downwards and is orthogonal to the upper and lower plates
which are maintained at constant temperature. The lateral wall of the cell is adiabatic
with the condition of zero heat flux. All the boundaries are no-slip.
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The three-dimensional time-dependent Navier–Stokes equations with the Bous-
sinesq approximation for an incompressible viscous fluid have been integrated nu-
merically. The equations have been made non-dimensional using the ‘free-fall’ velocity
U = (gα∆d)1/2, the distance d between the horizontal plates and their temperature
difference ∆ giving

∂u

∂t
+ u · ∇u = −∇p+ Qx̂+

(
Pr

Ra

)1/2

∇2u, (2.1)

∇ · u = 0, (2.2)

∂Q

∂t
+ u · ∇Q =

1

(PrRa)1/2
∇2Q, (2.3)

where u is the velocity vector, x̂ the gravity unity vector and p the pressure. Q denotes
the non-dimensional temperature defined as Q = (T − Tc)/∆ so that 0 6 Q 6 1; Tc
is the temperature of the upper cold plate.

The equations, in a cylindrical coordinate system in terms of primitive variables
(velocity and pressure), have been discretized using second-order-accurate finite-
difference approximations in space and in time. The solution procedure is essentially
that of Verzicco & Orlandi (1996) with the modifications described in Verzicco &
Camussi (1997). Here it is enough to note that the system of discretized equations is
solved by a fractional-step method and the advancement in time is performed by a
third-order Runge–Kutta scheme.

The grid independence of the results has been checked for every simulation. In
particular we have used the criterion given by Grötzbach (1983) that the mean grid
size δ = (r∆θ∆r∆x)1/3 is smaller than the smaller of the Kolmogorov scale and the
diffusive temperature scale. This constraint gives for Pr < 1, δ 6 π(Pr2/RaNu)1/4,
while for Pr > 1, δ 6 π(1/Pr2RaNu)1/4. Another condition to be satisfied is that the
boundary layers are properly spatially resolved. This implies that within the thinner
of the thermal boundary layer (δT/d ≈ 1/2Nu) and the viscous boundary layer
(δv ∼ δTPr) there are at least 3–5 grid points (Grötzbach 1983). The satisfaction of
all these constraints implied that grids ranging from 33×33×65 up to 85×97×193 in
the radial, azimuthal and vertical directions (r, θ and x), respectively, had to be used.
The upper limit was fixed by the power of the computer available and this, in turn,
posed a limitation on the range of parameters that could be explored. In particular
at Pr = 0.022 (mercury) we could simulate Rayleigh numbers up to Ra = 106 while
at Pr = 0.7 (air) the maximum was Ra = 2 × 107. As a further check we have
performed a grid independence test for the most critical cases (Pr = 0.022, Ra = 106

and Pr = 0.7 and Ra = 2× 107). According to Grötzbach (1983) the Nusselt number
is the quantity most sensitive to the spatial resolution and when the above simulations
were repeated using a grid 65 × 65 × 129 only negligible differences with the finest
grid (the two values of the Nusselt number were within the error bars) were observed.

Concerning the initial conditions, one simulation was restarted from the field
obtained by an axisymmetric case with small-amplitude random noise superimposed
on the temperature. The field was then evolved until a statistical steady state, observed
in the energy modes, was attained (see figure 2 of the paper by Verzicco & Camussi
1997). The simulation was then run for at least 30 large-eddy-turnover times (defined
as T = πd/U) to accumulate statistics and fields. This procedure, however, was time
consuming, and therefore it was followed only for the run at Ra = 6 × 105 and
Pr = 0.022. For the other cases, the runs were initiated by a fully developed field at
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the closest Ra and Pr with a sudden change in the parameters to the desired value.
Of course in this case the flow also underwent an adjustment but it was only 1–2
large-eddy-turnover times long. Once the flow adjusted to the new equilibrium state
the simulation was continued for 30–50 large-eddy-turnover times and the results then
analysed. The need to run each case for such a long time was due to convergence of
the statistical quantities when the flow was turbulent. In particular, every simulation
was run until the values of the Nusselt number averaged over a time t and of its
r.m.s. did not change when averaged over a time t − 10T. Further details are given
in Verzicco & Camussi (1997) and Camussi & Verzicco (1998).

3. Results
3.1. Fundamentals

The Nusselt number Nu = Hd/κ∆ is defined as the quantity of heat per unit surface
H transferred between the hot and cold plates, normalized with the conductive heat
κ∆/d that is the heat transferred in the absence of convective motion. In order to
clarify the Nu dependence on the flow parameters we have performed three series of
numerical simulations; in two of them ‘low’ and ‘high’ Prandtl numbers (Pr = 0.022
and Pr = 0.7) were used, with the Rayleigh number varied in such a way as to
obtain a sufficiently long power law range of the Nu vs. Ra relation (the value
Pr = 0.7 cannot be considered ‘high’ but rather moderate; however, in the following,
it will be shown that the fluid dynamics do not change when a threshold value for
Pr is exceeded and Pr = 0.7 is already beyond such threshold). In the third series
of simulations, the Rayleigh number was fixed at Ra ' 6 × 105, while the Prandtl
number covered the range 2.2 × 10−3 6 Pr 6 15. The results of the simulations
are summarized in figure 1 where some additional experimental and numerical data
are also reported for comparison. It is immediately evident that there are two flow
regimes; in the first (for Pr . 0.35) the Nusselt number increases with Pr while in the
second the Nusselt number is independent of Pr (see figure 1b). This independence
can be also appreciated from figure 1(a) where results at Pr = 0.35, Pr = 0.7 and
Pr = 7 show indistinguishable behaviour.

Another important feature is the exponent β of the relation Nu ∼ Raβ that in
the low Pr case (β = 0.25 ± 0.004 ' 1/4) is smaller than in the high Pr case
(β = 0.285 ± 0.004 ' 2/7). This difference might appear negligible; however, in the
range of Ra of common applications (Ra ≈ O(107–1010)) such a small deviation could
imply errors in the predicted heat transfer of more than 100%.

The high Pr regime has already been widely investigated numerically and ex-
perimentally and many characteristics of the flow field have been understood from
flow visualizations. Starting from assumptions based on experimental evidence the
exponent β = 2/7 has been given several theoretical explanations. Shraiman & Siggia
(1990) found this exponent by considering the structure of the mean flow. Their fun-
damental hypotheses were that (i) the thermal boundary layer is contained within the
viscous velocity sublayer; (ii) the persistent mean flow close to the horizontal plates
generates a velocity parallel to the plates that increases with the distance (U ∼ x)
thus yielding a linear profile. These hypotheses led Shraiman & Siggia to the scaling
law Nu ∼ Ra2/7. In some recent experiments, however, Ciliberto, Cioni & Laroche
(1996) have found that the Nusselt number in water does not change when screens
are placed inside the domain so that the recirculation cell is destroyed. This would
suggest that in the high Pr regime the large-scale motion is ineffective in the heat
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Figure 1. (a) Nu vs. Ra relation for different Pr: •, present numerical results at Pr = 0.022; ,
present numerical results at Pr = 0.7; �, present numerical results at Pr = 0.35; N, numerical
results by Kerr (1996) at Pr = 0.7; ◦, experimental results by Cioni et al. (1997) at Pr = 0.025; ,
experimental results by Cioni et al. (1997) and by Chillá et al. (1993) at Pr = 4.0; �, experimental
results by Horanyi et al. (1997) at Pr = 0.005; , fit Nu ∼ Ra0.285; , fit Nu ∼ Ra0.25;

, fit Nu ∼ Ra0.25. (b) Nu vs. Pr relation at Ra = 6 × 105: , fit Nu ∼ Pr0.14: �, present
numerical results; -, experimental results from Horanyi et al. (1997) and Rossby (1969) for sodium
and mercury, respectively (the value of Rossby has been corrected to account for the different aspect
ratio of his cell according to Belmonte et al. 1994).

transfer which is dominated instead by the motion of the thermal plumes. This is
the main assumption made by Castaing et al. (1989) who found the Nu ∼ Ra2/7 law
assuming that the main mechanism of heat transfer is due to thermal plumes that
move in the bulk of the flow with constant velocity. This conjecture has also been
confirmed by the experiments in helium and water of Belmonte, Tilgner & Libchaber
(1994) who, from a local relation between heat flux and shear at the plates, found
the large-scale circulation to be too weak to balance the observed heat flux. They
note that thermal plumes coexist with the large-scale circulation and they must be
responsible for most of the heat flux.

The results for low Pr show a substantial disagreement with both theories as
confirmed by figure 1(a). The reason for this disagreement is the structure of the flow
that, in this Pr regime, does not satisfy either the thermal plume scenario of Castaing
et al. (1989) or the flow structure proposed by Shraiman & Siggia (1990). It is evident
from the snapshot of figure 2(a) that the diffusive nature of the temperature field
does not allow the formation of plumes. In addition, given Pr � 1, we expect the
viscous boundary layer to be contained within the thermal boundary layer and not
vice versa.

The presence of a distinct flow regime with different flow features is a funda-
mental point for low-Pr thermal convection and it deserves careful investigation by
visualization and direct measurement. Unfortunately these checks are very difficult
to perform experimentally since this regime pertains to liquid metals. In these fluids
flow visualization is impossible and many measurements become problematic. On the
other hand the numerical simulations are also difficult because low Pr yields a large
Reynolds number at moderate Ra. However, recent papers by Verzicco & Camussi
(1997) and Camussi & Verzicco (1998) have shown that in mercury, Pr ≈ 0.022, the
flow features observed in the range of Ra = 5× 104 − 106 are similar and consistent
with the experimental results at higher Ra (O(107–1011)) found by Cioni et al. (1997)
and Takeshita et al. (1996). This implies that the flow structure can be investigated
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Figure 2. Snapshots of vertical cross-sections at Pr = 0.022 and Ra = 106 (a, b) and at Pr = 0.7
and Ra = 2 × 107 (c, d). Left, temperature contour plots: , 0.5 6 Q 6 1; , 0 6 Q < 0.5
(∆Q = 0.05). Right, azimuthal vorticity: , clockwise; , counter-clockwise rotation
(∆ω = 2.0).

in detail with the convenience of numerical simulations and, once the main features
have been understood, new assumptions can be made about the flow dynamics. Of
course it must be verified, a posteriori, that both assumptions and conclusions based
on the limited Ra range afforded by numerical simulations are in agreement with the
available experimental results for higher Ra.

In figure 2 snapshots of vertical sections of azimuthal vorticity and temperature are
shown for two cases at low and high Pr. As we expect from the above discussions,
the thermal boundary layer in the low Pr case is much thicker than in the other case
while the opposite happens for the velocity boundary layer (see also figure 4 and
related discussion). We see that while the thermal boundary layers for high Pr are
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dominated by plumes shed at random positions from the horizontal plates (figure 2c)
the low Pr temperature field is substantially different (figure 2a). In particular the
large thermal diffusivity prevents thermal plumes from being generated and the
persistent recirculation cell induces a rising hot current on the right and a sinking
cold current on the left that dominate the field. The same conclusions about the
absence of plumes and the mean flow were reached by Takeshita et al. (1996) from
experiments in mercury in the range of Rayleigh number 106–108. Previous numerical
simulations (Verzicco & Camussi 1997) have shown that this flow structure is very
robust since it preserves similar features from the onset of convection up to the fully
turbulent regime. In addition, Cioni et al. (1997) have given indirect proof that the
same flow is observed even for Rayleigh numbers up to 1010. This suggests that a
model for the heat transfer can be proposed by considering a mean flow structure
like the one described above.

3.2. Theory

There is numerical and experimental evidence that the vertical temperature difference
∆ between hot and cold plates is mostly sustained within the thermal boundary
layers, while in the bulk of the flow the temperature is nearly constant (figure 3 a, b).
Denoting by δT the thickness of the thermal boundary layer, we have H ≈ 1

2
k∆/δT ,

the factor 1
2

coming from the fact that only half of the temperature difference is
present in each boundary layer. From these definitions it follows that Nu ≈ d/(2δT )
indicating that the Nusselt number is related to the inverse of the non-dimensional
thermal boundary layer thickness. Now we focus on the temperature equation inside
the thermal boundary layer by considering the structure of the mean flow. The strong
recirculation cell induces a persistent ‘wind’ which sweeps the plates with a velocity
(U) in the horizontal direction (y) and generates a boundary layer much thinner
than the thermal boundary layer. Another effect of the cell is the generation of cold
descending and hot rising currents that in turn generate a horizontal temperature
difference ∆h. The different thicknesses of the boundary layers allow us to assume
that inside the thermal boundary layer the velocity is approximately constant and
mainly horizontal so that when the temperature equation is averaged in time the
nonlinear terms reduce to U∂T/∂y. For the viscous terms we can use a boundary
layer assumption in which all the gradients other than that normal to the wall are
neglected. In the fully turbulent regime we expect statistical steadiness of the flow
and therefore the temperature equation reads

U
∂T

∂y
≈ κ∂

2T

∂x2
, (3.1)

where time averaging of each term is implied. At this point we must relate U and
∂T/∂y to the flow parameters so that some information on the Nusselt number can
be obtained. We assume, then, that the velocity U is proportional to the free-fall
velocity U ≈ AU and that the horizontal temperature difference ∆h is proportional
to the total temperature difference ∆h ≈ B∆. Finally, in a recirculation cell of aspect
ratio 1 we have ∂T/∂y ≈ ∆h/d and the above equation becomes

A(gα∆dB)1/2∆

d
≈ κ∆

2δ2
T

⇒ Nu ≈
(
AB

2

)1/2

(RaPr)1/4. (3.2a,b)
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Figure 3. Averaged vertical temperature profiles: (a) Pr = 0.022: , Ra = 106; ,
Ra = 6 × 105; , Ra = 2.5 × 105; , Ra = 5 × 104. (b) Pr = 0.7, the same sequence as
(a) for Ra = 2× 107, Ra = 107, Ra = 4.5× 106 and Ra = 1.8× 106. Averaged velocity profiles: (c)
Pr = 0.022: , Ra = 106; , Ra = 6×105; , Ra = 2.5×105; , Ra = 5×104. (d)
Pr = 0.7, the same sequence as (c) for Ra = 2× 107, Ra = 107, Ra = 4.5× 106 and Ra = 1.8× 106.

The factors A and B have been left unspecified for the moment to stress that
in principle both of them could depend on Ra and Pr in a complicated way† thus

† It should be stressed that in order to hold the proportionality between U and ∆c and the
free-fall velocity and total temperature difference respectively, A and B can depend only on Pr.
In fact, Ra contains ∆ and the dependence of A and B on Ra would change the proportionality.
Nevertheless, at the moment we prefer to leave this possibility open to point out that U ≈ AU
and ∆c ≈ B∆ are only assumptions that need to be proved by direct evaluation. These checks are
performed in the next section.
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Figure 4. (a) Viscous ( ) and thermal (•) boundary layer thicknesses vs. Ra at Pr = 0.022: ,
δT = 2.8Ra−0.25; , δv = 0.1Ra−0.18 fits. (b) The same as (a) at Pr = 0.7: , δT = 3.1Ra−0.29;

, δv = 0.95Ra−0.23 fits.

making the prediction (3.2) useless. However, while verifying all the hypotheses leading
to the above relation, we will see that this is not the case and only the coefficient A
has a dependence on Pr; when this dependence is accounted for, the relation (3.2)
predicts well the Ra and Pr dependence of the Nu number in the low-Pr regime.

A similar model was derived by Jones et al. (1976) who, speculating about the nature
of convection between free boundaries, obtained Nu ∼ (RaPr)1/4. The assumption
of a free-slip wall is equivalent to positions in our flow where the viscous boundary
layer is supposed to be much thinner than the thermal one so that the latter is swept
by a constant velocity. Busse & Clever (1981) by an approximate solution of two-
dimensional steady convection in the limit of low Pr obtained Nu ∼ Ra1/4 without
any Pr dependence. In particular, starting from the arguments of Jones et al. (1976)
they assumed that the convection roll exhibits a ‘flywheel’ character thus producing
an inertial convection. In our model there is a very similar assumption since, even
if the large scale is neither steady nor two-dimensional, we resort to some induced
effects, like the permanent horizontal temperature difference or the horizontal velocity
sweeping the thermal boundary layers, that imply a ‘flywheel’-like large-scale flow at
least in the statistical sense. In conclusion this model is essentially the same as that
proposed by Jones et al. (1976); however, we included the ingredients to obtain the
correct Pr dependence and to extend the model to the turbulent regime. In addition,
using the results of the numerical simulation and the available experimental data we
could check all the hypotheses and the validity limits.

The first hypothesis to be verified for (3.1) to be valid is that the viscous boundary
layer is always contained within the thermal boundary layer and that no crossing
occurs. In figure 4 we report the results obtained by direct estimation of the boundary
layer thicknesses from the temperature- and velocity-averaged profiles of figure 3. As
previously done in several papers (e.g. Takeshita et al. 1996; Belmonte et al. 1994),
all the thicknesses have been measured from the position at which the extrapolation
of the linear portion of the profile equals the central mean value of the temperature
and the maximum horizontal velocity for δT and δv , respectively. It should be noticed
that the present definition of δv is different from the boundary layer thickness λv
defined by Shraiman & Siggia (1990) and discussed by Kerr (1996). However, it can

be shown that their relation is simply given by λv = 2ν1/2δ
1/2
v /U

1/2
, U being the

magnitude of the maximum horizontal velocity. Therefore the transformation from
one definition to the other is very easy once λv or δv are known. From figure 4, it is
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evident that in the low Pr regime the first hypothesis in (3.1) is always verified and
even though the thermal boundary layer thickness decreases faster than the viscous
one, if a crossing occurred it would be only for Ra ≈ O(1020) where a different flow
regime (Nu ∼ Ra1/2) is known to apply†. The situation is quite different for Pr = 0.7
where the boundary layers are always of comparable thickness and a crossing has
occured at Ra = 2 × 107. This might only be a fortuitous coincidence; however, B.
Castaing (personal communication) states that in a cylindrical cell of unity aspect
ratio in gaseous helium (Pr ' 0.7) starting from the value of Ra = 2×107 he observed
all the turbulent quantities to follow a well defined power law behaviour with Ra.

These results agree with the experiments performed in similar conditions. In the high
Pr regime, for example, we have found for the non-dimensional thermal boundary
layer thickness δT/d = 3.1Ra−0.29 while Belmonte et al. (1994) and Xin, Xia & Tong
(1996) found respectively δT/d = 3.14Ra−0.29 and δT/d = 3.54Ra−0.29 even though
the former used a cubic cell and the latter did the experiment in water. For the
viscous boundary layer we obtained δv/d = 0.95Ra−0.23 while Xin et al. (1996) found
δv/d = 0.51Ra−0.16. In this case the results are more scattered; however, this might
be due to the difficulty of velocity measurements in thermal convection flows. Similar
results were obtained by Kerr (1996) who observed at Pr = 0.7 that δT/d decreases
with Ra faster than δv/d. We wish to stress that the present results agree also with
the definition of Shraiman & Siggia (1990) since we have δv ∼ Ra−0.23 and U ∼ Ra0.5

(see the next section) which give λv ∼ Ra−0.38; this value is close to their theoretical
prediction λv ∼ Ra−3/7.

In the low Pr regime Naert, Segawa & Sano (1997) obtained for both boundary
layers a thickness decrease as Ra−0.2. They used a fitting of the profiles with the
function tanh(x/δ) and estimated the boundary layer thicknesses with δ; however,
when the present criterion was used they found δT/d ∼ Ra−0.25 (A. Naert, personal
communication). These results agree quite well with ours of figure 4(a) being δT/d ∼
Ra−0.25 and δv/d ∼ Ra−0.18.

In conclusion, from all the available data, we can say that even though there is
some scatter possibly due to thickness definitions, measurement uncertainties and
different experimental set-ups, in the low Pr regime the condition δv � δT is always
satisfied while in the high Pr regime the thicknesses cross for some value of Ra and
eventually the condition δT � δv applies.

Briefly, we note that the exponents γ of our fits δT ∼ Nuγ are exactly the opposite
of those of Nu ∼ Raβ thus confirming the consistency of the results with Nu ∼ δ−1

T .

3.3. Nusselt number dependence on Rayleigh number

In the previous section we have derived the relation (3.1) and we have shown its
validity in the low Pr regime. In this section we discuss and validate the hypotheses
leading from (3.1) to (3.2) showing some comparisons with other experimental and
numerical results.

A first important point to be checked is the Ra dependence of the horizontal
velocity U sweeping the plates. Given the incompressibility of the flow and the shape

† According to Kraichnan (1962) there is a threshold value for the Rayleigh number after which
the heat is transferred much more efficiently (Nu ∼ Ra1/2). This range is known as the asymptotic
limit and Cioni et al. (1997) have found that for Ra ≈ O(109–1010) a transition might indeed be
present for the mercury. In contrast Castaing et al. (1989) in gaseous helium increased the Ra up to
1013 without measuring any change in the slope of the Nu vs. Ra relation. Although some transition
is expected in the limit of increasing Ra this is a controversial point and some ad hoc experimental
work is needed before drawing any conclusion.
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Figure 5. Schematic of the velocity induced by the cell.
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Figure 6. Vertical profiles of vertical velocity difference max[|ux(θ)−ux(θ+π)|]; the flatter curves are
at Pr = 0.7: , Ra = 2× 107; , Ra = 107; , Ra = 4.5× 106; , Ra = 1.8× 106.
The peaky curves are at Pr = 0.022: , Ra = 106; , Ra = 6× 105; , Ra = 4× 105;

, Ra = 2.5× 105.

of the recirculation cell, the maximum horizontal difference of the vertical velocity
evaluated at the mid-plane x/d = 0.5 must equal the maximum vertical difference
of the horizontal velocity at the axis, which is twice the velocity U (figure 5). These
profiles for several Ra are reported in figure 6 showing that the assumption U ≈ AU
is valid and a dependence of A on Ra can be ruled out. The same happens for
Pr = 0.7 even though the velocity magnitude is more than twice as small.

Similarly to the velocity, the Rayleigh number dependence of the horizontal tem-
perature difference has also to be analysed; this temperature difference ∆h is induced
by the large-scale motion and the profiles are shown in figure 7(a). In this case the
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Figure 7. The same as figure 6, but for the maximum horizontal temperature difference.
(a) Pr = 0.022, (b) Pr = 0.7.

assumption ∆h ≈ B∆ is also verified and this excludes, in the low Pr regime, the de-
pendence of B on Ra. This result is in apparent disagreement with the experimental
findings of Cioni et al. (1997) who presented an indirect estimate of ∆h. Nevertheless,
they directly measured only the maximum temperature difference on the plates ∆p,
which was indeed found independent of Ra. Afterwards, using a simplified model, a
number of assumptions were made to relate ∆p to ∆h and this could be the reason
for the weak dependence they found of ∆h on Ra. Nevertheless, they pointed out
that this conclusion must be taken with caution since their measurement of ∆h is
indirect. In figure 7(b) we show the same profiles as for figure 7(a) but for Pr = 0.7.
As for the horizontal velocity, the temperature difference is also weaker than in the
low Pr case but now it decreases as Ra increases. This is due to the thermal plumes
that for increasing Ra detach more frequently and at random positions. This effect,
when averaged in time, tends to cancel any horizontal temperature inhomogeneity
thus yielding a decreasing ∆h for increasing Ra.

Coming back to the low Pr regime we have seen that the factors A and B are both
independent of Ra; therefore when Pr is fixed (3.2) yields Nu ∼ Ra1/4 which agrees
with the results found for mercury (Verzicco & Camussi 1997; Cioni et al. 1997;
Rossby 1969; Naert et al. 1997) and for sodium (Horanyi, Krebs & Müller 1997).
In addition, from figure 6 and figure 7(a) we can compute the numerical values of
A and B at Pr = 0.022 that when inserted into (3.2b) give Nu ≈ 0.16Ra1/4, which
is in surprisingly good agreement with the fit given in figure 1(a) for the mercury.
The fact that not only the exponent but also the numerical factor in the Nu vs. Ra
relation is very well predicted indicates that the essential features of the heat transfer
mechanism are captured by the present model in the low Pr regime.

Before concluding this section, we wish to point out another result implied by the
present model. The direct dependence of the velocity scale U on the free-fall velocity
U implies that the Reynolds number increases with Rayleigh number according to
Re ∼ Ra1/2. This results is confirmed by figure 8(a) and, given the good collapse of the
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Figure 8. (a) Reynolds vs. Rayleigh numbers curve at Pr = 0.022: symbols, numerical data; ,
Re ∼ Ra0.53 fit. (b) Reynolds vs. Prandtl number curve at Ra = 6 × 105: symbols, numerical data;

, Re ∼ Pr−0.73 fit; , Re ∼ Pr−0.94 fit.

velocity profiles of figure 6, we have the same behaviour in the high Pr regime. The
same result was obtained by Tilgner (1996) even though he considered self-gravitating
concentric spheres, a configuration which does not allow a straightforward comparison
with the present results.

From the experimental side, due to technical difficulties in the velocity measure-
ments, the velocity behaviour has often been conjectured from the peak frequency
(fp) of the temperature spectra. Indeed, if the peak frequency is the signature of
the large-scale convective cell its inverse gives the large-eddy turnover time from
which information on the velocity is obtained. Castaing et al. (1989) and Ciliberto et
al. (1996) both found fp ∼ Ra0.49 in gaseous helium and water respectively while Xin
et al. (1996) using a novel light scattering technique were able to measure velocities
in water directly obtaining U ∼ Ra0.5. These results imply in the high Pr regime the
scaling Re ∼ Ra0.5 which has been confirmed by several numerical and experimen-
tal studies. In contrast, in mercury fp ∼ Ra0.428±0.005 has been reported by Cioni et
al. (1997), Camussi & Verzicco (1998) and fp ∼ Ra0.44±0.02 and fp ∼ Ra0.46±0.02 have
been found by Naert et al. (1997) and Takeshita et al. (1996). From these results
it has been conjectured that the Reynolds number has a similar dependence on the
Rayleigh number, which is against the hypothesis for the present heat transfer model.
However direct computations of the velocities (present results and Tilgner 1996) have
shown that the condition Re ∼ Ra0.5 indeed holds at low Pr. This means that, at
least in the low Pr regime, the correspondence between fp and U is not direct and all
the consequences deriving from this assumption should be considered with care. In
particular, using the data of the present simulations at Pr = 0.022 and the data for
fp from Camussi & Verzicco (1998) we have found the relation U/(d fp) = 1.345Ra0.1

which is not a constant in Ra. We wish to stress however, that this relation has been
obtained only from a limited range of Ra obtainable by numerical simulation and
experimentally measured velocities at higher Ra would help to validate the above
expression.

3.4. Nusselt number dependence on Prandtl number

The analysis of the Prandtl number dependence of the flow relies on fewer experimen-
tal data than the previous section for the reasons already discussed in the Introduction.
Furthermore there are few numerical simulations for high and low values of Pr and
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Figure 9. Lower curve: Maximum vertical velocity vs. Pr at Ra = 6 × 105: symbols, numerical
results; , U/U ∼ Pr−0.22 fit. Upper curve: the same but for the horizontal temperature
difference: , ∆h/∆ ∼ 0.6.

we are aware only of the work of Tilgner (1996) who investigated the parametric
effect of Pr. Tilgner (1996), for thermal convection between concentric spheres, has
found that the Reynolds number decreases as Pr increases, following different power
laws depending on the Pr value. In particular, for Pr . 0.5 he found Re ∼ Pr−0.73

while for Pr > 0.5 the law Re ∼ Pr−0.92 applied. As already mentioned Tilgner’s flow
configuration does not allow a direct comparison with our results; however, once
again our Re dependence on Pr is in agreement with Tilgner’s findings (figure 8 b).
This result can be used to estimate the Pr dependence of the factor A in the relation
U ≈ AU. In fact, we have Re ≈ Ud/ν = AUd/ν = A(Ra/Pr)0.5. In the previous
section we have shown that A can depend on Pr and, in order to satisfy the results
of figure 8(b) this must be A ∼ Pr−0.22 for Pr . 0.35 and A ∼ Pr−0.44 for Pr > 0.35.
This is confirmed in figure 9 where a direct evaluation of U/U is shown and the
predicted dependence on Pr is observed.

Concerning the horizontal temperature difference ∆h we are not aware of any result
about its dependence on Pr. We can imagine, however, that as long as thermal plumes
do not form ∆h does not change since it is induced by the large-scale flow which is
always present. In contrast, when the plumes begin to detach from the plates ∆h will
decrease for the same reason discussed for figure 6. A confirmation of these ideas
comes again from figure 9 where direct calculations of ∆h performed as in figure 6
are presented. We can see that ∆h does indeed remain constant for Pr . 0.35 while it
starts decreasing when Pr exceeds the value of about 0.4. The former results indicates
that, in the low Pr regime where the model of §3.2 is applicable, the coefficient B in
the relation ∆h ≈ B∆ is a truly numerical factor and its Pr dependence is also ruled
out.

We can now reconsider (3.2b) at constant Ra which, on account of the Pr depen-
dence of A, yields Nu ∼ Pr0.14 in agreement with the fit found in figure 1(b). Similarly
to the previous section, from figure 9 we can calculate the numerical values of A
and B that, when plugged into (3.2b) together with the value of Ra = 6 × 105, give
Nu ≈ 7.8Pr0.14. This law is in quantitative agreement with the fit Nu ≈ 8.5Pr0.14 given
in figure 1(b), also confirming that the essential features of the flow dependence on
Pr are well represented by the present model.
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Figure 10. Lower curve: total kinetic energy vs. Pr at Ra = 6 × 105: , Et/U2 ∼ Pr−0.44 fit.
Upper curve: the same but for the percentage of kinetic energy in the n = 1 mode (cell strength)
vs. Pr at Ra = 6× 105.

It is worth noting that the exponent 0.14 in the Nusselt vs. Prandtl number relation
is not a particular value which depends on the Rayleigh number of figure 1(b)
(Ra = 6× 105) since the same exponent has been found at Ra = 1.8× 106 (using the
results and the fits of figure 1(a)) and is consistent with the available experimental
data (Cioni 1998).

3.5. Large-scale circulation effects

Although the effect of the mean circulation on the heat transfer has been studied in
several works, a consensus has not yet been reached. For example Shraiman & Siggia
(1990) consider the large-scale flow an essential ingredient for the heat transfer, while
Belmonte et al. (1994) note that, at least in water, the mean flow is too weak to
account for the total heat transport. Finally, Ciliberto et al. (1996) in their experiment
show that complete suppression of the mean flow does not cause variations in the
Nusselt number.

From the results of the previous sections we expect that the effect of the large-scale
motion depends on the Pr regime of the flow. In fact, as Pr increases the Reynolds
number decreases and the large-scale motion weakens. On the other hand, for low Pr
thermal plumes are not generated and most of the heat is transferred by the inertial
convection of the large cell.

The first argument is addressed in figure 10 where the total kinetic energy and the
‘strength’ of the large-scale flow are shown. In particular, the lower curve of figure 10
is the total kinetic energy normalized by the squared free-fall velocity, from which
it is evident that the larger Pr the smaller the kinetic energy and consequently the
weaker the cell. As an aside we note that the slopes of the curve in the two Pr
regimes are exactly twice the slopes of figure 9 as should be expected from Et ∼ U2.
Further important information about the cell strength is given in the upper curve of
figure 10. In fact, when the velocity field is decomposed into azimuthal Fourier modes
it is possible to isolate the n = 1 energy mode which corresponds to the large-scale
recirculation cell.

From figure 10 we can see that as Pr decreases a larger percentage of the total
kinetic energy is in the large-scale motion, consistent with the picture that in the low
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Figure 11. Azimuthal non-dimensional Fourier modes N̂u(k)/Nu obtained by the Fourier transform

in the azimuthal direction of the local Nusselt number ∂Q/∂x− (RaPr)1/2(uxQ) averaged over the

radial, axial directions and time. , Pr = 0.022 and Ra = 6 × 105 (Re = (Ra/Pr)1/2 ' 5190);

, Pr = 0.7 and Ra = 2× 107 (Re = (Ra/Pr)1/2 ' 5340).

Pr regime the large-scale flow is the most important structure. In contrast, in the high
Pr regime the energy of the cell seems to be a constant percentage of the total energy
even though the cell strength continues to decrease because the total kinetic energy
decreases with Pr. The fact that the heat transport due to the large-scale motion is
fundamental at low Prandtl number is shown in figure 11 where the azimuthal modes

(N̂u(k)) of the local Nusselt number are shown. It is clear that at low Pr there is
an intense peak for k = 1 which is the effect of the convective cell while the higher
modes decrease rapidly. On the other hand, at Pr = 0.7 the peak is less intense and
the higher modes become more important since substantial heat transfer is due to
small-scale structures (plumes).

If the analysis above is correct we can conjecture that when the large-scale motion
is suppressed the Nusselt number has to remain more or less constant if the flow is
in the high Pr regime while the Nusselt number has to decrease substantially in the
low Pr regime.

In order to suppress the mean flow one possibility is to insert some screens into the
cell as in the experiment by Ciliberto et al. (1996). However, from the numerical point
of view this is extremely complicated and at the moment is beyond our computing
capabilities. The easiest way we could think of to suppress the large-scale flow was
to perform the simulations imposing axial symmetry. One could argue that in this
way the temperature fluctuations could be artificially reduced since the flow is not
allowed to have azimuthal gradients. However, should this be true, the effect would be
greater for high Pr when the flow can produce tiny localized temperature variations
rather than in the low Pr regime where the temperature field is essentially diffusive.
On the contrary, when the results are analysed it is only the low Pr case that shows
substantial differences from the three-dimensional flow; therefore the axisymmetric
approximation can be used for this analysis.

In figure 12, snapshots of the axisymmetric counterparts of the flows of figure 2
are reported and large differences arise. Figure 12(b) shows that the mean flow
now consists of an array of counter-rotating toroidal structures whose effect on the
temperature is to induce a field with the high temperatures (Q > 0.5) confined to the
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Figure 12. Snapshots of vertical cross-sections at Pr = 0.022 and Ra = 106 (a, b) and at Pr = 0.7
and Ra = 2× 107 (c, d). Left: temperature contour plots: , 0.5 6 Q 6 1; , 0 6 Q < 0.5
(∆Q = 0.05). Right: azimuthal vorticity: , clockwise; , counter clockwise rotation
(∆ω = 2.0).

lower half of the domain and vice versa for the upper half. It is clear that in this
configuration, where the horizontal temperature differences are zero by definition,
the model described in §3.2 is not applicable and a large difference with respect to
the Nusselt number of the three-dimensional flow has to be expected. The situation
is very different for the simulation at Pr = 0.7 where thermal plumes can still
form and high-temperature bubbles of fluid can reach the upper plate. This implies
that if indeed the thermal plumes are the main mechanism for heat transfer this
must be more or less equivalent in this case and in the three-dimensional flow. The
calculations of Nusselt number are consistent with the described dynamics. In fact,
we have Nu = 5.1 ± 0.30 in the three-dimensional case at Pr = 0.022 and Ra = 106

while it drops to Nu = 3.22± 0.65 in the axisymmetric flow. In contrast at Pr = 0.7
and Ra = 2 × 107 we obtained Nu = 21.35± 0.31 in the three-dimensional flow and
Nu = 19.80 ± 1.95 for the axisymmetric configuration. The same trend is confirmed
by the Reynolds number that at Pr = 0.022 decreases about 30% in the axisymmetric
case with respect to the three-dimensional case while at Pr = 0.7 it remains essentially
unchanged. These results confirm that in the low Pr regime the large-scale motion
is essential for the heat transport and the model proposed in this paper accounts
for this fundamental flow feature. On the other hand for high Pr flows the thermal
plumes are responsible for most of the heat transport in which the large-scale motion
plays a negligible role. This is in agreement with the scenario proposed by Castaing
et al. (1989) and with the experiment by Ciliberto et al. (1996). Kerr (1996) made
similar analyses in a large aspect ratio cell and he also concluded that a recirculation
pattern is not necessary to get the 2/7 exponent at Pr = 0.7.

4. Closing remarks
The dynamics of a turbulent convective flow has been analysed for different values

of the Prandtl number. The main focus was on the heat transfer with a particular
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interest in the different mechanisms occurring for low and high Prandtl numbers.
The results of the present numerical simulations, integrated with other numerical and
experimental data available in the literature, have shown that there is a value for
the Prandtl number (Prt ≈ 0.35) which separates distinct flow regimes. For Prandtl
numbers higher than this threshold thermal plumes are generated at the hot and
cold horizontal plates and they are able to penetrate the bulk of the flow and to
reach the opposite plate. This is the most effective mechanism for heat transfer and
a model based on the described features yields Nu ∼ Ra2/7 (Castaing et al. 1989).
This value agrees with the results obtained here in the high Pr regime and with the
experiments performed in similar conditions. At the same time a large-scale motion
is present in the cell that generates a persistent wind sweeping the horizontal plates.
This wind induces viscous and thermal boundary layers whose thickness, δv and δT
respectively, depends on the value of the Rayleigh number. For the Rayleigh numbers
affordable in the present simulations δv and δT are of comparable size but both of
them decrease with Ra and since δT decreases faster than δv the inequality δT � δv
eventually holds for increasing Ra. In agreement with Belmonte et al. (1994) and
Ciliberto et al. (1996) we have found that while the large-scale motion determines the
structure of the boundary layers it plays a negligible role in the heat transport because
it weakens as the Prandtl number increases. As further confirmation an example has
been shown in which the large-scale flow was artificially suppressed by imposing axial
symmetry and the Nusselt number remained essentially unchanged with respect to
the full three-dimensional case.

When the Prandtl number is below the threshold Prt ≈ 0.35 the flow dynamics
are substantially different. In particular the temperature is too diffusive for thermal
plumes to be generated and the temperature distribution is determined by the effect
of the large-scale motion. This implies that vertical currents of hot and cold fluid
are produced on the lateral wall of the cell and the heat transfer process occurs
during the horizontal motion of the currents along the thermal boundary layers
(figure 2a). Also in this case, the large-scale motion induces viscous and thermal
boundary layers; however, given the low value of Pr, the condition δv � δT applies.
The dynamics described have been used to extend and validate a model derived by
Jones et al. (1976) and reconsidered by Busse & Clever (1981). This model predicted
the correct behaviour of the dependence of the Nusselt number on the Rayleigh
and Prandtl number at least for the range of parameters investigated. The fact that
the predictions of the model are in qualitative and quantitative agreement with the
results in the literature confirms that the essential features of the heat transport in
low Prandtl number flows are correctly accounted for. Once again an example in
which the large-scale motion is artificially suppressed has been shown; in this case,
however, the fundamental effect of the mean flow was absent and therefore the heat
transfer was drastically reduced.

The simultaneous use of the results of §§3.3 and 3.4 gives the expression for
the Nusselt number Nu ≈ 0.27Pr0.14Ra0.25, where the numerical prefactor and the
exponent 0.14 of Pr come from the results of figures 6, 7 and 9. It is worth noting
that these figures were used only to estimate A and B introduced in §3.2 and therefore
the proposed law should not be considered purely as a fit to experimental data. This
law predicts quite well the Nusselt number even in a range of parameters which was
not covered by the present simulations. For example, for sodium the formula gives
Nu ≈ 0.124Ra0.25 which is not far from the fit Nu ≈ 0.119Ra0.25 of figure 1(a) while
in mercury at Ra = 109 the above expression yields Nu ' 28.7 while the experimental
value from Cioni et al. (1997) is Nu ' 29.5. We have already mentioned that the



Effects of Prandtl number on turbulent convection 73

validity of this formula is restricted to the low Pr regime which was found to be
Pr . 0.35; of course this value does not fix a sharp transition but rather it indicates
a region where the flow smoothly changes from one regime to the other.
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